Zeyun Shi
Structural phase transitions of optical patterns in atomic gases with microwave-controlled Rydberg interactions
Shi, Zeyun; Li, Weibin; Huang, Guoxiang
Abstract
Spontaneous symmetry breaking and formation of self-organized structures in nonlinear systems are intriguing and important phenomena in nature. Advancing such research to new nonlinear optical regimes is of much interest for both fundamental physics and practical applications. Here we propose a scheme to realize optical pattern formation in a cold Rydberg atomic gas via electromagnetically induced transparency. We show that, by coupling two Rydberg states with a microwave field (microwave dressing), the nonlocal Kerr nonlinearity of the Rydberg gas can be enhanced significantly and may be tuned actively. Based on such nonlocal Kerr nonlinearity, we demonstrate that a plane-wave state of probe laser field can undergo a modulation instability (MI) and hence spontaneous symmetry breaking, which may result in the emergence of various self-organized optical patterns. Especially, we find that a hexagonal lattice pattern (which is the only optical pattern when the microwave dressing is absent) may develop into several types of square lattice ones when the microwave dressing is applied; moreover, as a outcome of the MI the formation of nonlocal optical solitons is also possible in the system. Different from earlier studies, the optical patterns and non-local optical solitons found here can be flexibly manipulated by adjusting the effective probe-field intensity, nonlocality degree of the Kerr nonlinearity, and the strength of the microwave field. Our work opens a route for versatile controls of self-organizations and structural phase transitions of laser light, which may have potential applications in optical information processing and transmission.
Citation
Shi, Z., Li, W., & Huang, G. (2020). Structural phase transitions of optical patterns in atomic gases with microwave-controlled Rydberg interactions. Physical Review A, 102(2), Article 023519. https://doi.org/10.1103/physreva.102.023519
Journal Article Type | Article |
---|---|
Acceptance Date | Jul 24, 2020 |
Online Publication Date | Aug 17, 2020 |
Publication Date | 2020-08 |
Deposit Date | Jul 24, 2020 |
Publicly Available Date | Aug 17, 2020 |
Journal | Physical Review A |
Print ISSN | 2469-9926 |
Electronic ISSN | 2469-9934 |
Publisher | American Physical Society |
Peer Reviewed | Peer Reviewed |
Volume | 102 |
Issue | 2 |
Article Number | 023519 |
DOI | https://doi.org/10.1103/physreva.102.023519 |
Public URL | https://nottingham-repository.worktribe.com/output/4784466 |
Publisher URL | https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.023519 |
Files
(20.6.29)SZY Pattern Formation-Rydberg-Microw-Dress
(1.3 Mb)
PDF
You might also like
Shock wave generation and propagation in dissipative and nonlocal nonlinear Rydberg media
(2024)
Journal Article
Tripartite quantum Rabi model with trapped Rydberg ions
(2024)
Journal Article
Spectral Signatures of Vibronic Coupling in Trapped Cold Ionic Rydberg Systems
(2024)
Journal Article
Downloadable Citations
About Repository@Nottingham
Administrator e-mail: discovery-access-systems@nottingham.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search